Distribution of siderophore gene systems on a Vibrionaceae phylogeny: Database searches, phylogenetic analyses and evolutionary perspectives
نویسندگان
چکیده
Siderophores are small molecules synthesized and secreted by bacteria and fungi to scavenge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell surface for transport over membranes. Several siderophore systems from Vibrionaceae representatives are known and well understood, e.g., the molecular structure of the siderophore, the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known about how these systems are distributed among the ~140 Vibrionaceae species, and which evolutionary processes contributed to the present-day distribution. In this work, we compiled existing knowledge on siderophore biosynthesis systems and siderophore receptors from Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution, origin and evolution. Through literature searches, we identified nine different siderophore biosynthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identified by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cognate receptors are found more widespread. Phylogenetic analysis of three siderophore systems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution and extensive loss, and some cases of horizontal gene transfers. The present work provides an up to date overview of the distribution of siderophore-based iron acquisition systems in Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that the present-day distribution is a result of several evolutionary processes, such as old and new gene acquisitions, gene loss, and both vertical and horizontal gene transfers.
منابع مشابه
Comparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene
This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (ITS1). Significant intraspecific variation in the secondary structure of ITS1 rRNA was found in Artemia tibetiana. In the phylogenetic tree based on joined primary and secondary structure sequences, Artemia urmiana and pa...
متن کاملThe Chordate Proteome History Database
The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequen...
متن کاملPhylogenetic relationships of the commercial marine shrimp family Penaeidae from Persian Gulf
Phylogenetic relationships among all described species (total of 5 taxa) of the shrimp genus Penaeus, were examined with nucleotide sequence data from portions of mitochondrial gene and cytochrome oxidase subunit I (COI). There are twelve commercial shrimp in the Iranian coastal waters. The reconstruction of the evolution phylogeny of these species is crucial in revealing stock identity that ca...
متن کاملPhylogeny of urate oxidase producing bacteria: on the basis of gene sequences of 16S rRNA and uricase protein
Uricase or Urate oxidase (urate:oxygen oxidoreductase, EC 1.7.3.3), a peroxisomal enzyme which is found in many bacteria, catalyzes the oxidative opening of the purine ring of urate to yield allantoin, carbon dioxide, and hydrogen peroxide. In this study, the phylogeny of urate oxidase (uricase) producing bacteria was studied based on gene sequences of 16S rRNA and uricase protein. Repres...
متن کاملPhylogenetic relationships of the commercial marine shrimp family Penaeidae from Persian Gulf
Phylogenetic relationships among all described species (total of 5 taxa) of the shrimp genus Penaeus, were examined with nucleotide sequence data from portions of mitochondrial gene and cytochrome oxidase subunit I (COI). There are twelve commercial shrimp in the Iranian coastal waters. The reconstruction of the evolution phylogeny of these species is crucial in revealing stock identity that ca...
متن کامل